Today is Earth Day, which is a pretty important day for people like me. Perhaps you’ve seen the trending #IAmAGeoscientist (#ImAGeoscientist) posts around social media associated with the American Geosciences Institute’s (AGI) effort to celebrate this day by highlighting the efforts of those the people that study the Earth and its complex systems.

I’m proud to proclaim that #IAmAGeoscientist too; because in being that, I get to be myself. My discipline lets me do all of the things I enjoy and study the things that inspire me without ever sacrificing those things that make me – well – me.

Geoscience permeates through my being and influences most things that I do. This compatibility exists because the activities in which I engage, the thoughts that infiltrate my mind, and the phenomena that captivate me day-to-day all involve my craft.

For example, yesterday I spent about half of my day relaxing with my husband. We went to visit a waterfall in Southwest Virginia and then went on a hike through the Valley and Ridge province of the Appalachian Mountains. I had a great time hiking, crossing streams, climbing rock formations, and meditating in the noisy tranquility of wilderness. I reflected on the regional geology – to which I’ve been fairly well-exposed – as well as the implications of myriad features presenting themselves to me. My main purpose wasn’t science, but that aspect never really leaves my mind.


Ripples forming in stream sands, Dismal Creek, VA

Then there were the events of today. I spent most of my time on my computer. I am running numerical models, creating figures for a manuscript, and putting together a scientific poster for a workshop I’m attending next week in Colorado.


Scenic valleys and ridges in Southwest Virginia

The point is that being a geoscientist is multi-faceted. Sure, we get to go to the field, observe the natural world, and explore wild and exotic places. We also get to work long hours in laboratories, perform tedious analyses, and attempt to interpret results that can be pretty darn daunting sometimes. Then we get to think about the broader implications of our science: we get to interpret our findings in ways that resonate with the community-at-large and beyond as well as attempt to engage outsiders (through policy, education, and outreach) that are less familiar with our work.

Like I mentioned before. It’s multi-faceted, but I love each and every aspect. In fact, there is no other label that I’d rather give myself than Geoscientist.

Off to the Races

I’ve been living in Kentucky for almost two years now, having moved here to work towards an M.S. degree in Geology at the University of Kentucky. Prior to moving to Lexington, the only thing I really knew about the Commonwealth was that it was well-known for Bourbon, Bluegrass, and horses. I have fond memories of chatting with my friends back home about moving to Kentucky, ironically sporting a flamboyant hat, and sipping Mint Juleps at Churchill Downs for the Kentucky Derby. My desire to do so was somewhat based off of a morbid curiosity that I picked up after reading the short essay “The Kentucky Derby is Decadent and Depraved” by gonzo journalist Hunter S. Thompson. That story was written during a time with a different degree of civil unrest than today, but I figured there were elements of the atmosphere that may persist and could likewise permit an interesting cultural experience.

Unfortunately, I likely won’t get the chance to actually attend the Kentucky Derby. I spent last year in Nepal doing field work during the event and will be running my first ultramarathon in Virginia this year. So, unless life brings me back to Kentucky some early May, I’ll have to celebrate it remotely like so many others.

To make up for this; however, I accompanied the week’s seminar speaker to the Keeneland race track in Lexington for my first thoroughbred sporting event. Departmental seminars are common in the sciences (as well as many other disciplines). They offer the dual benefit of affording students and faculty members an opportunity to hear about research that others have been conducting as well as expanding professional networks by interacting with scientists outside of the home institution. For this particular seminar, Prof. Eric Ferré from Southern Illinois University presented on some work that stemmed from his time cruising with the International Ocean Discovery Program (IODP).

The IODP is an international research program that focusses on extracting cores of rock from deep within the Earth from below the sea-floor. IODP research vessels explore our planet’s vast oceans with the goal of gleaning information about that part of the Earth which we still don’t fully comprehend. For his talk, Dr. Ferre introduced audience members to a type of rock within oceanic crust that forms in so-called “fast-spreading” centers in a transition zone between sheeted dikes – where ocean water mixes readily with newly forming igneous rock – and less permeable rock that doesn’t see as much hydrologic influence (gabbro). Interestingly, this transition zone rock is also observed in ophiolites or oceanic rock that has made its way onto continents through a process called obduction.

I spend most of my time thinking about continental crust, which has a different composition than oceanic crust and therefore different properties. I was; however, able to draw parallels regarding how certain thermal and mechanical properties are affected by zones of transition within these different types of crust. With this idea in mind, Dr. Ferré and I were able to discuss elements of our research that may be complementary and forge out a tentative plan for future collaboration.

We happily discussed our respective projects between each of the exciting races at the Keeneland track. All the while I sipped on a Keeneland Breeze (not quite a Mint Julep) and we all did some crowd-observing (no extravagant hats, though).


A Journey to “The Gateway to Hell”

I mentioned before that I traveled to Iceland this past summer. I saw a lot of seriously incredible geology on that trip so the locale is likely to manifest in many posts.

On our second full day in the country, we went north from the Ring Road to visit the Hekla Volcanic Area. Hekla – also known as “The Gateway to Hell” – is one of Iceland’s most active volcanoes. After at least 250 years of dormancy, the first recorded eruption of the volcano occurred in 1104. Since then it has had more than twenty significant eruptions, with the last one occurring in 2000. Hekla is also unusually aseismic (it doesn’t produce earthquakes) and activity only starts about an hour or less before an eruption. Considering it took more than 30 minutes to drive to the parking area and we spent about 3 hours on the volcano itself, we would have certainly not survived in the event of an eruption. We were, of course, well aware of this. The Icelandic government; however, graciously reminded us of our poor decision with the following sign.


Sign warning us of the danger involved in climbing Hekla

Abandoning all common sense we went for the summit: and we had an amazing time. Along the way, I observed some of the interesting features of this volcano. Hekla is a stratovolcano, a name given to volcanoes with cone shapes that result from layers that form from material associated with alternating types of eruptions. Some eruptions produce gentler lava flows because they are composed of minerals that yield lower viscosities (like warm maple syrup). Others eruptions are incredibly violent and produce explosions of high-viscosity lavas as well as tephra, pumice, and thick ash. I found features associated with both types during my visit.


Flow patterns are seen in hardened lava and are likely associated with a lower-energy phase of eruption.


Blocky flows and tephras from explosive eruptions.

Hekla is also part of a ridge where volcanic material erupts through large fissures. These fissures run parallel to and are associated with the Mid-Atlantic Ridge, or boundary between the North American and Eurasian tectonic plates where new oceanic crust is generated as the Atlantic Ocean continues to open.


Ridge of volcanoes seen from Hekla proper. The different colors are from the different types of iron oxides that make up the lavas.

Standing at the summit, enjoying the views and consuming some well-earned snacks, I began to contemplate the continual evolution of the landscapes beneath my feet. The mere impermanence of the entire island is simply awesome. With every eruption, the volcano’s surface is formed anew but the peak upon which I stood exists as an amalgamation of several such events. As a geologist, I’m often presented with information that forces me to think along time scales which are much longer than what most people are used to and can be challenging to comprehend. However, it’s also refreshing to observe first-hand the rich dynamism of our ever-changing planet.


View from the summit of Hekla.

Perhaps that’s why I’ve come to learn to be mindful of these experiences as they occur; but also, reflect on the fact that the processes I’m observing are everlasting. Perhaps also, it is why I feel a little less hesitant to engage in activities where death seems a little more imminent.