A Place of Peace

I have lived in the American Southwest for a little over three years now but before I moved here I used to imagine myself spending time in this vast desert landscape visiting each of the awe-inspiring public lands. Now, I’ve been known to be a bit of an armchair traveler; I like to indulge in books about incredible places, usually while riding some form of public transportation into work or school. So back East, I would envision climbing the seemingly endless cracks in the sandstone at Indian Creek after reading High Infatuation by Steph Davis, meditating under the serene formations at Arches National Park at sunset after reading Desert Solitaire by Edward Abbey, or being completely humbled and crying immediately upon first sight of the Grand Canyon after reading J.W. Powell’s The Exploration of the Colorado River and Its Canyons (which actually happened, but I’ll save that for another post). This led to my calling westward to a place that seemed so drastically different from where I was and where I had spent most of my life.

So it may come as a surprise that while I’ve lived here a good amount of time now, I’ve yet to recreate in many of these places. However, little by little I’m attempting to change that so about a month ago I took a short trip to southern Utah to finally visit Zion National Park.

Checkerboard Mesa, Zion National Park

My companion and I entered from the East and were struck first thing by a feature known as Checkerboard Mesa. The distinctive pattern after which it is named is due to cutting of sub-horizontal cross-beds that formed when ancient sand dunes were deposited and then lithified or transformed into rock. These features are useful to geoscientists because they give information about the depositional environment. Specifically, one can discern – among other things – the direction of flow of the medium that carried the particles of sand (in this case wind). Nearly perpendicular to the horizontal plane, are vertical fractures that are caused by a type of physical weathering known as freeze-thaw cycles. Essentially, water infiltrates spaces within the rock and if the temperature drops low enough, the water freezes and expands. This is followed by the reverse process of thaw and – subsequently – contraction when the temperature rises again. Temperature cycling therefore results in stresses being exerted on the rock which in turn leads to fracture. Because the fractures cut across the sedimentary strata, we know that they formed after the beds were deposited. This is an example of a so-called cross-cutting relationship.

Overall, the combination of processes makes for a pretty neat looking first glimpse of this National Park!

Until the next piece of this place of peace (Zion), I’ll leave you with some Edward Abbey:

“Each thing in its way, when true to its own character, is equally beautiful.”

Edward Abbey, Desert Solitaire

New beginnings

This past February, I turned 33 years old and for the first time in my life, I went skiing. Now, it may strike you as strange that someone like me – so obsessed with mountains – had spent 33 years never descending a snowy mountain slope in one of the most exhilarating ways. However strange it may seem, it was true.

So the weekend of my 33rd birthday I decided to change this. I ventured to Flagstaff, AZ – about 3 hours north of my home in the Phoenix metropolitan area – and spent the next two days enjoying the city of Flagstaff and learning how to ski.

It started with a lesson. We learned the basics: how to wear the boots, how to attach the skis, how to move forward, how to move sideways, how to turn on flat ground. Then we moved to more advanced skills: how to descend a small slope, how to turn while going downhill, how to stop yourself, how to speed up, slow down, turn slowly, turn quickly.

After about an hour of this we hit the bunny slopes! I started going downhill moving left and right to negotiate the other people on the slope and then I lost control. I was gaining speed and making a “pizza” with my skis wasn’t slowing me down, so I did what felt like the best thing to do at the time was – I let myself fall. I stopped about one foot from the snow blowing machine. It was awesome!

I continued to ride the bunny slopes for that day and the next and on my second day even took the lift to a beginners slope up the mountain. I only ended up falling that first time and I loved every minute of the entire experience.

The thing that struck me the most, however, was how much I enjoy beginning something new. I love the feeling of not knowing how to do something and then slowly and incrementally gaining skills that lead to first just becoming somewhat capable and then maybe later becoming quite skilled. My love of this journey of development and exploration is likely why I’ve spent so much of my life as a student, and why I decided to pursue higher education.

I used to get anxious when I’d reflect on this quality I possessed. For example, I used to switch majors when pursuing my undergraduate degrees, then when I finally picked a discipline I later decided to switch to a new field entirely, I’ve left jobs to pursue something new, I’ve moved all over the country, I’ve ended long-term relationships, I’ve changed my diet, I’ve started hobbies and then abandoned them. I felt like I lived in a constant state of flux with no real constant to hold onto. I felt like I’d never “land”, like I’d never know what I wanted to be “when I grew up”.

But through all of that change I finally realized what the constant was: I was still me.

And over the past few years since I’ve posted last, I’ve discovered more about who that person is. I’ve focused on improving my mental wellness and I’ve learned to love me for me.

I used to base my worth on external means of validation, on my accolades, my accomplishments, how other people recognized me and my value. Now I’m content with who I am and focus more on my relationships with family and friends and my general well-being.

While I still have work to do, I love that I love to be a beginner because that allows me to constantly be challenged and to discover more about myself and the world around me. It also encourages me to continue my pursuit of deeper knowledge about my chosen craft because I can incorporate information and skills from a broad range of disciplines as I work to become an expert at being a beginner.

We Should All Be Feminists

Today is International Women’s Day and I’m celebrating by reflecting on what it has meant to me thus far being a female in STEM.

I currently study geoscience but before that I was an engineer. As a female in engineering I quickly learned that I was a minority. I remember very clearly the first time I admitted this to myself. It was the first day of one of my introductory engineering courses and the professor had all of the students give a brief introduction of themselves to the class. When it came to be my turn I said “Hi, my name is Stephanie, I’m interested in chemical engineering, and in case you didn’t notice, I’m the only woman in the class.” I got some laughs from my classmates (and the professor!) for that one.

During a break in that same class one of the other students came up to me and said, “Is this common, for you to be the only female in an engineering course? That doesn’t seem right.” I was surprised and delighted that my comment impacted at least one student. I then responded with, “well, there are definitely other female engineering undergraduates, and last semester there was one other woman in my programming class”.

I continued to navigate through my program of study, seeing more female students as I advanced to higher level courses. However, we were never the majority. I was the only female in both of my research groups and all but one of my mentors during that time were male. I was lucky though, I never felt like I was treated differently for being female and I was able to succeed.

Following graduation, I spent a few years doing science and technology policy at the Department of Energy. My boss at the time was the Acting Director of the Office of Science, Dr. Patricia M. Dehmer. Dr. Dehmer is one of the most intriguing women I have ever met. She was this petite, softly-spoken woman but she had a prominent, influential presence that demanded respect. She an accomplished scientist and understood the nuances of managing not only people but also complex, large-scale scientific projects.

She was the first woman in a leadership position that I had served under and she taught me some of the most important lessons I would ever learn. I’ll never forget when she told me that when she was a young researcher she was timid like me, but then she realized she would never achieve success if she continued to try and blend into the background. She told me that I was the authority on my projects and actually made me believe that for the first time. She told me that if I expected others to have confidence in my work then I first needed to have some confidence in myself.


Female colleagues in the School of Earth and Space Exploration at ASU.

I still struggle with confidence issues, but I’ve come a long way since then. I’m no stranger to imposter syndrome (nor is ANY other female graduate student I’ve EVER met). But a lot has changed since that day when I realized I was the only woman in the class. I’m now in a Ph.D. program where most of my extremely impressive colleagues are female, I share a building with some of the most accomplished female geoscience researchers in their respective fields, and even the Director of my School is a woman.

I can’t stress enough the importance for females in STEM disciplines to have people in leadership and mentorship roles that advocate for equality. We don’t just need more diversity throughout the entire academic “pipeline”, we also need a culture of respect and dedication to fair and equal treatment for everyone in STEM and from everyone in STEM.

I think back now to this past holiday season. I was gifted the book “We Should All Be Feminists” by Chimamanda Ngozi Adichie. In it, the author argues that feminism shouldn’t be viewed as a negative label available only to needlessly embittered women (as it often is). Instead, feminism should be embraced by all because achieving equality requires equal dedication to it from everyone in a community.

Assembling a Geoscientist

Perhaps you’ve heard the news. The great tectonicist Eldridge Moores passed away unexpectedly. With great sadness, I reflect on the ways he’s impacted me as a geoscientist.

Eldridge Moores was the main character in Assembling California, the final book of John McPhee’s Annals of the Former World series on geology (an excellent read if you’re not familiar). I remember reading the series when I was first getting into geology and imagining myself doing all of the exciting things recounted in the books. Now I get to do those things and I’m extremely grateful for that.

I met Dr. Moores in 2015. I was attending the meeting of the Geological Society of America in Baltimore, MD. At the time, I had very little understanding of geology and the major players in the field but I had a productive meeting nonetheless. One of the sessions I frequented at the time was on connections between tectonics in the United States and tectonics in Asia. Eldridge Moores was in all of the same sessions and his enthusiasm about the subject resonated with me greatly. I’d like to think he had some influence on my decision to become a Himalayan geologist.

Although I only met Dr. Moores briefly, I’ll never forget him. He was an excellent man and amazing geologist and his death leaves a hole in our tight-knit community.

A little taste of Arizona’s geology (and veggie burgers)!

Today I accompanied a new friend and colleague to REI to try out and purchase some climbing gear. His name is Laurence Tognetti (@ET_Exists) and he’s a fellow graduate student at the School of Earth and Space Exploration at Arizona State University (ASU).

Just having started at ASU myself, I’ve been eager to get out and see some of the local geology but haven’t had a lot of opportunities yet. I’m still settling into my new research group and trying to keep up with a heavy course load while also trying to prepare my M.S. defense, so I’ve been pretty busy.

We decided to head north of Tempe into Scottsdale, first enjoying lunch at Rehab Burger Therapy. I got a veggie burger, which was quite good. Then we headed to REI and Laurence got outfitted for rock climbing, accomplishing our primary goal. On the way back to the Phoenix metro area, we passed a striking outcrop of red rock with large clasts contained within it. I felt the urge to stop and investigate so we made a U-turn and set off geologizing.


Lunch in Scottsdale

The first thing we noticed was different-sized boulders of granite and quartzite. Farther along the path up the butte, we began to see the bedrock. This butte (named Papago Butte) appeared to be composed of a sedimentary breccia, with large clasts (some bigger than us!) of granite and quartzite. The matrix material was a striking-red fine-grained sandstone.


Camels Head Formation sedimentary breccia. The light-colored clasts are granite and the matrix containing them is sand (sunglasses on largest clast for scale).

Breccias are defined by highly angular clasts that exist in a finer-grained matrix material. Consequently, the sediments making up the rock are extremely variable in terms of their size. Geologists say that they are “poorly-sorted”. Conglomerates share this characteristic with breccias; however, the larger clasts in conglomerates are rounded instead of angular. The poorly-sorted character and angularity of the clasts in breccias tell geologists that those sediments didn’t travel very far prior to deposition and didn’t spend much time being reworked by surface processes prior to being lithified into rock. So basically, something pretty drastic (and fast) happened to put these sediments in place.

The current hypothesis is that about 17 million years ago, there were mountains composed of granite and quartzite. One day, a large landslide brought pieces of these mountains into a nearby riverbed. The breccia (along with other river sediments) was trapped between down-dropped blocks of bedrock that resulted from faulting associated with stretching of the crust (structures called half-grabens). The events resulting in the formation of these structures is known in central Arizona as the Mid-Tertiary Orogenies (because they occurred between 42 and 15 million years ago). The source of this orogenesis was the steepening of the angle of a subducting slab of crust that had broken off from what is now the western coast of North America.

Since that time, surface processes have eroded the landscape. The most obvious erosional feature we observed was tafoni. These are essentially large, cave-like pockets that form in different types of rocks. I had become accustomed to seeing lots of tafoni in the Red River Gorge in Kentucky so this was a welcome sight for me.


Features of Papago Buttes: sedimentary breccia in the foreground, tafoni in the background (vegetation for scale).

We spent about 15 or 20 minutes in the middle of the afternoon out there. Since it’s August, the sun was REALLY intense. I haven’t done much mid-day outdoor activity since moving to AZ but the elements here are more extreme than I anticipated. By the time we were back in the car, I had finished my water and noticed I was getting a headache. Dehydration happens quickly in the desert, so I know to be better prepared next time!

Just an update…

So, I’ve been writing my M.S. thesis and preparing for my big move to AZ to start a Ph.D. program at ASU. This is why I haven’t updated in so long.

I will return this Fall with fresh new posts, I promise!



Virginia is for (province) lovers: Part I

I’m from Virginia, and for that reason, I’m pretty partial to it compared to other states in the USA. In fact, I have this memory from elementary school chorus during which we sang a song called the “Fifty Nifty United States.” At the end of the song, patriotic school children are to exclaim that their home state “is the best of the fifty nifty United States.” In my case, Virginia earned that title, and I still believe that after all these years.

I also began learning geology in Virginia, so the foundations of my geologic knowledge are based upon Virginia’s regional characteristics. The first geology course I took was called “Regional Geology of Great Falls Park, Virginia” and the very first thing we were taught during that course was the physiographic provinces of the state.

Virginia is separated into five provinces that run approximately NE to SW and include (from west to east): the Allegheny (Appalachian) Plateau, the Valley and Ridge, the Blue Ridge, the Piedmont, and the Coastal Plain. About a year and a half ago I was traveling to Georgia with some other University of Kentucky geology students, and as we passed some of these provinces, I became excited and remarked that we were entering a physiographic region with which I shared some history. This earned me a nickname close to “province [queen]” but a little less appropriate for online publication.


Physiographic map of the mid-Atlantic region. The yellow line marks the approximate location of the southern border of Virginia. (Image courtesy of the United States Geological Survey, source for annotated image)

As a “province queen,” over the next two posts, I’d like to recount some recent experiences during travels across some of these areas in the last week or so. I left Lexington (crossing the Allegheny Plateau) to participate in a trail race in Blacksburg, VA and to visit my husband in Radford, Virginia. Blacksburg and Radford are parts of the greater New River Valley, one valley that makes up the “Valley and Ridge Province” in Southwest Virginia. The province is given this name because of the “crinkled carpet” sort of topography that exists there. The valleys are underlain by rocks (like carbonates) that erode easily while the ridges are made up of more resistant sandstones and conglomerates. Before being eroded, these rocks were deformed during Appalachian mountain building. They responded to contractional stresses by folding and thrust faulting along weaker rock layers in an orientation consistent with the distribution of stress associated with the collision (perpendicular to the direction of force).


Friends and I pre-race with scenic valleys and ridges in the background near Blacksburg, VA

A couple of days after the race, I spent a half-day with my husband near Floyd, VA. We drove to the Blue Ridge Parkway to do a trail run and then enjoyed some wine at Chateau Morrisette, which is nearby. The Blue Ridge Parkway is a road that runs through another physiographic province (can you guess which one? Correct, the Blue Ridge!). As in the Valley and Ridge province, the rocks that make up this province were exposed during Appalachian mountain building: they were deformed and transported along faults. The rock types that make up this province; however, are different from those rocks that make up the Valley and Ridge. Exposed along the Blue Ridge are “basement rocks” that have deeper, more “complex” origins: they show evidence of an even older period of mountain building that happened prior to the formation of the Appalachians. This “basement-involved” process exposed older metamorphosed volcanic and sedimentary rocks that erode differently than those in the Valley and Ridge and therefore result in different topography.


Running along the Blue Ridge Parkway: views to the west show the nearby Valley and Ridge province.

This topography – which has been evolving over several millions of years – creates breathtaking views that make running along trails and relaxing with a glass of local wine one of the most pleasant experiences!

There’s plenty more Virginia travel and geology to discuss in my next post: Virginia is for (province) lovers: Part II. Stay tuned!

Machhapuchare: “Like a spire of a higher kingdom”

I study the Himalaya, and I’m not alone. Many geologists for many years have gone to South Asia to attempt to understand one of the most magnificent orogens on Earth. It’s also commonly referred to as the “type example” for continent on continent collision and is usually the first of this type to come to mind for most students of geology. The Himalayan mountains and the Tibetan Plateau to the North formed as a result of the collision between the Indian subcontinent and the Eurasian tectonic plate which began about sixty million years ago. Since both plates are made up of continental lithosphere, the crust thickened at the convergent boundary, and the Himalaya peaks uplifted. Weathering and erosion by glaciers and rivers at the surface also sculpted these peaks. All of this combined created some of the most beautiful mountains in the world.

I study the complex processes at work during this type of tectonic event using computer simulations. I also like to have a way to “ground-truth” my numerical models so one year ago I traveled to the field with my colleagues to collect rocks along transects that span the major rock units and faults in the Himalayan range. We trekked to the Annapurna region along the Modi Khola and Marshyangdi Rivers in central Nepal collecting rocks, taking measurements, and making field observations.


Farmed foothills en route from Kathmandu to Pokhara

As my first time in the Himalaya, I was beyond excited to have this opportunity. Also, since I didn’t study geology as an undergraduate, this gave me a chance to develop some skill in field methods.


Enjoying Dal Bhat for lunch along the Trishuli River

There is a lot I can write about regarding that field season, and I hope to cover it across many entries. For this post; though I want to describe the first time I saw one of those magnificent Himalayan peaks.

The Himalaya is unique in that it has some of the highest topographic relief in the world. The difference in elevation changes very dramatically in this region. Due to this relief, as one approaches the high Himalaya, there is an abrupt change in climate such that at one moment it feels almost like a jungle and the next there are snowfields and glaciers everywhere.


Machhapuchare at dawn.

I was riding in a jeep from Kathmandu with my colleagues observing the tree-covered foothills and cloudy skies associated with the onset the of monsoon season and then all of a sudden I saw it – a blinding white abstraction proffering from between the clouds – Machapuchare. As the first Himalayan peak to which I’d bared witness, and rhapsody challenging to describe overcame me. To see something that beautiful but with such threatening presence flooded my being with complex emotion. I’m not the only one to feel this way. In fact, I will borrow some words from my favorite writer, Peter Matthiessen:

“[Four] miles above these mud streets of the lowlands, at a point so high as to seem overheard, a luminous whiteness shone – the light of snows. Glaciers loomed and vanished in the grays, and the sky parted, and the snow cone of Machhapuchare glistened like a spire of a higher kingdom.”

Stay tuned for more on Macchapuchare.


Today is Earth Day, which is a pretty important day for people like me. Perhaps you’ve seen the trending #IAmAGeoscientist (#ImAGeoscientist) posts around social media associated with the American Geosciences Institute’s (AGI) effort to celebrate this day by highlighting the efforts of those the people that study the Earth and its complex systems.

I’m proud to proclaim that #IAmAGeoscientist too; because in being that, I get to be myself. My discipline lets me do all of the things I enjoy and study the things that inspire me without ever sacrificing those things that make me – well – me.

Geoscience permeates through my being and influences most things that I do. This compatibility exists because the activities in which I engage, the thoughts that infiltrate my mind, and the phenomena that captivate me day-to-day all involve my craft.

For example, yesterday I spent about half of my day relaxing with my husband. We went to visit a waterfall in Southwest Virginia and then went on a hike through the Valley and Ridge province of the Appalachian Mountains. I had a great time hiking, crossing streams, climbing rock formations, and meditating in the noisy tranquility of wilderness. I reflected on the regional geology – to which I’ve been fairly well-exposed – as well as the implications of myriad features presenting themselves to me. My main purpose wasn’t science, but that aspect never really leaves my mind.


Ripples forming in stream sands, Dismal Creek, VA

Then there were the events of today. I spent most of my time on my computer. I am running numerical models, creating figures for a manuscript, and putting together a scientific poster for a workshop I’m attending next week in Colorado.


Scenic valleys and ridges in Southwest Virginia

The point is that being a geoscientist is multi-faceted. Sure, we get to go to the field, observe the natural world, and explore wild and exotic places. We also get to work long hours in laboratories, perform tedious analyses, and attempt to interpret results that can be pretty darn daunting sometimes. Then we get to think about the broader implications of our science: we get to interpret our findings in ways that resonate with the community-at-large and beyond as well as attempt to engage outsiders (through policy, education, and outreach) that are less familiar with our work.

Like I mentioned before. It’s multi-faceted, but I love each and every aspect. In fact, there is no other label that I’d rather give myself than Geoscientist.